Deletions in cox2 mRNA Result in Loss of Splicing and RNA Editing and Gain of Novel RNA Editing Sites
نویسندگان
چکیده
As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.
منابع مشابه
Intron RNA editing is essential for splicing in plant mitochondria
Most plant mitochondria messenger RNAs (mRNAs) undergo editing through C-to-U conversions located mainly in exon sequences. However, some RNA editing events are found in non-coding regions at critical positions in the predicted secondary and tertiary structures of introns, suggesting that RNA editing could be important for splicing. Here, we studied the relationships between editing and splicin...
متن کاملEvidence that RNA editing modulates splice site selection in the 5-HT2C receptor gene.
Adenosine to inosine editing of mRNA from the human 5-HT2C receptor gene (HTR2C) occurs at five exonic positions (A-E) in a stable stem-loop that includes the normal 5' splice site of intron 5 and is flanked by two alternative splice sites. Using in vitro editing, we identified a novel editing site (F) located in the intronic part of the stem-loop and demonstrated editing at this site in human ...
متن کاملLNCediting: a database for functional effects of RNA editing in lncRNAs
RNA editing is a widespread post-transcriptional mechanism that can make a single base change on specific nucleotide sequence in an RNA transcript. RNA editing events can result in missense codon changes and modulation of alternative splicing in mRNA, and modification of regulatory RNAs and their binding sites in noncoding RNAs. Recent computational studies accurately detected more than 2 milli...
متن کاملRNA editing intermediates of cox2 transcripts in maize mitochondria.
Eighteen cytidines are changed to uridines in the coding sequence of transcripts for cytochrome c oxidase subunit 2 (cox2) in maize mitochondria. The temporal relationship of editing and splicing was examined in cox2 transcripts by sequence analysis of spliced and unspliced cDNAs. Cloned cDNAs of unspliced cox2 transcripts ranged from clones with no edited nucleotides to completely edited forms...
متن کاملRegulation of glutamate receptor B pre-mRNA splicing by RNA editing
RNA-editing enzymes of the ADAR family convert adenosines to inosines in double-stranded RNA substrates. Frequently, editing sites are defined by base-pairing of the editing site with a complementary intronic region. The glutamate receptor subunit B (GluR-B) pre-mRNA harbors two such exonic editing sites termed Q/R and R/G. Data from ADAR knockout mice and in vitro editing assays suggest an int...
متن کامل